28V 功率 pmos 驱动&栅调&漏调多集成 TR 电源管理芯片

产品特性 1.

- 28V 功率 PMOS 驱动
- PA 发射电源调制: 5V/200mA
- DRV 收发电源调制: 5V/100mA \triangleright
- LNA 接收电源调制: 5V/100mA \triangleright
- \triangleright GaN 栅压调节范围: -1.7V ~-3.2V
- GaAs 栅压调节范围: -0.3V ~ -0.65V
- \triangleright GaN 栅极驱动电流: ±50mA
- GaAs 栅极驱动电流: ±10mA \triangleright
- 正负压欠压锁定
- T信号过脉宽保护

功能描述 2.

C49026是一款多功能射频电源调制器芯片 主要由28V PMOS功率管驱动电路,发射、接收、公共支 路电源调制电路和GaAs、GaN栅压调节电路这三部分电路构成。其中PMOS功率管驱动电路为高速、低延 迟驱动电路,具有负压电源监控及使能控制开断功能、漏极快速放电功能、过脉宽保护功能。发射、接收、 公共支路电源为VDD,内置功率PMOS,由T/R信号直接控制开关。栅压调制控制电路由GaAs、GaN栅极 调制共两路构成,GaAs由3位控制位对输出电压选择,GaN由4位控制位对输出电压选择,以实现栅压可调。

产品应用 3.

- 射频驱动放大器供电
- 28V功率PMOS驱动
- GaAs/GaN栅极调制驱动

裸芯片/封装简介 4.

本产品为裸芯片,尺寸为: 2480×2270μm²(含划片槽)

绝对最大额定值 **5.**

表 1 绝对最大额定值

符号	参数	最小值	典型值	最大值	单位
V _{HI}	PMOS功率管驱动电源			36	V
$ m V_{DD}$	正电源电压			6	V
$V_{\rm EE}$	负电源电压			-6	V
T_{STG}	储存温度	-65		150	$^{\circ}$
T_A	工作温度	-55		125	$^{\circ}$
推荐工作条件 电源电压 V _{HI} : 9V~3 电源电压 V _{DD} : 4.5V 电源电压 V _{EE} : -5.5V 工作环境温度 T _A : - 贮存温度 T _{STG} : -65	36V V~5.5V V ~ -4.5V 55°C~125°C	л.	XXX KINST	\$17	
主要电参数					

使用中超过这些绝对最大值可能对芯片造成永久损坏。 (1)

推荐工作条件 **6.**

电源电压 VHI: 9V~36V 1)

电源电压 V_{DD}: 4.5V~5.5V 2)

3) 电源电压 V_{EE}: -5.5V ~ -4.5V

4) 工作环境温度 T_A: -55℃~125℃

5) 贮存温度 T_{STG}: -65℃~150℃

主要电参数 7.

除非特别说明, T_A= -55℃~125

表 2 主要电参数

	1 = X	W = 32 05 M				
参数	- 約号	测试条件	最小值	典型值	最大值	单位
VHI 静态电流	$ m I_{VHI}$	V _{HI} =28V		0.15	1	mA
VDD 静态电流	I_{VDD}	V _{DD} =5V		0.1	1	mA
VEE 静态电流	$I_{ m VEE}$	V_{EE} =-5 V		0.55	1.5	mA
输入高电平	V_H		2.4			V
输入低电平	V_L				0.8	V
输入漏电流	I_{IN}	TTL=0V/5V			10	uA
TO 输出高电平	ТОн	I _{OH} =-20mA	27.9			V
TO 输出低电平	TO_L	I _{OL} =20mA	16		19	V

PD 输出低电平	PD_{L}	I _{PD} =20mA			0.15	V
TXO 输出高电平	ТХОн	I _O =-200mA	4.85			V
TRX 输出高电平	$TRXO_{H}$	I _O =-100mA	4.9			V
RXO 输出高电平	RXO _H	I _O =-100mA 4.9				V
VG1 输出电平	VG1	I _O =±50mA, D[3:0]=0000 -1.79			-1.61	V
VG2 输出电平	VG2	I _O =±10mA, D[6:4]=000 -0.69			-0.61	V
TO 开通/关闭时间	t_on	负载电容≤3nF 30		30	100	ns
TXO 开通/关闭时间	txo_on	I ₀ =-100mA (1nF)	$I_0 = -100 \text{mA} (1 \text{nF})$ 50		100	ns
TRXO 开通/关闭时间	trxo_on	$I_0 = -50 \text{mA} (1 \text{nF})$		50	100	ns
RXO 开通/关闭时间	rxo_on	$I_{O} = -50 \text{mA} (1 \text{nF})$	X	50	100	ns

8. 功能框图及引脚介绍

8.1 功能框图

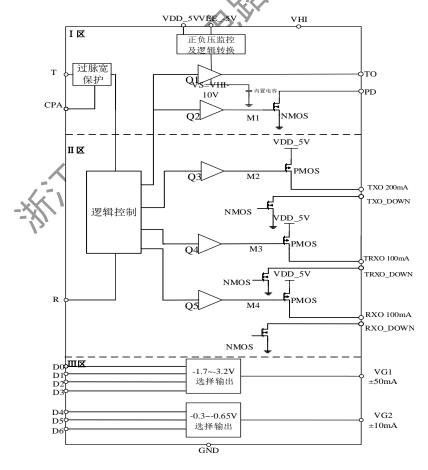


图 1 C49026 功能框图

8.2 引脚介绍

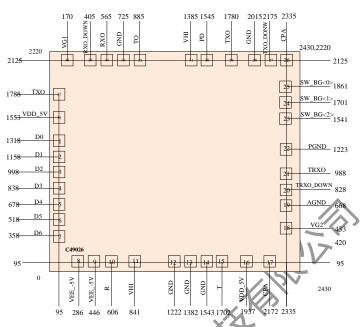


图 2 C49026 引脚分布图

- ▶ 芯片尺寸: 2480×2270μm²(含划片槽尺寸)
- ➤ PAD尺寸: VG1、VG2、TO、PD、TXO、VHI、PGND: 100×250μm²

VDD: $100\times400\mu m^2$

其它PAD: 100×100μm²

表 3 引脚功能说明

PAD	符号	功能
1	DO	GaN 栅压调节端口,内部电阻下拉
2	DI.	GaN 栅压调节端口,内部电阻下拉
3	-N _{D2}	GaN 栅压调节端口,内部电阻下拉
4	D3	GaN 栅压调节端口,内部电阻下拉
5	D4	GaAs 栅压调节端口,内部电阻下拉
6	D5	GaAs 栅压调节端口,内部电阻下拉
7	D6	GaAs 栅压调节端口,内部电阻下拉
8	VEE	-5V 电源
9	VEE	-5V 电源
10	R	接收输入信号端口,内部电阻下拉
11	VHI	+28V 电源
12	GND	接地

Rev.2

13	GND	接地		
14	GND	接地		
15	Т	发射输入信号端口,内部电阻下拉		
16	VDD	+5V 电源		
17	СРА	过脉宽保护时间设定脚,外接电容;不用时需接地		
18	VG2	GaAs 栅压输出-0.3V ~ -0.65V		
19	AGND	接地		
20	TRXO_DOWN	公共支路输出泄电端口		
21	TRXO	公共支路+5V 输出		
22	PGND	接地		
23	NC	悬空 117		
24	NC	悬空		
25	NC	悬空		
26	СРА	过脉宽保护时间设定脚,外接电容;不用时需接地		
27	TXO_DOWN	发射调制输出泄电端口		
28	GND	接地		
29	TXO	发射调制输出(选择接出)		
30	PD	外置 PMOS 漏极泄电端口		
31	VHI	+28V 电源		
32	ТО	外置 PMOS 栅极驱动输出		
33	GND	接地		
34	RXO	接收调制输出		
35	RXO_DOWN	接收调制输出泄电端口		
36	VG1	GaN 栅压输出-1.7V ~ -3.2V		
37	TXO	发射调制输出 (选择接出)		
38	VDD	+5V 电源		

9. 逻辑功能说明

▶ 逻辑关系真值表中,"0"指0V,"1"指5V。

9.1 PMOS 驱动电路 (I区)

PMOS驱动电路为高速、低延迟驱动电路,具有负压电源监控及使能控制开断功能、漏极快速放电功能,供电单元为VHI。

9.1.1 负压电源监控逻辑

负压监测门限值为-3V,阈值范围为±0.5V,即当VEE<-3.5V时,驱动器Q1使能有效,TO正常逻辑输

出; 当VEE>-2.5V时,驱动器Q1使能无效,TO为固定值28V,其逻辑关系见下表:

 VEE
 Q1 使能状态

 <-3.5V</td>
 有效

 >-2.5V
 无效

表 4 负压检测使能表

▶ 引脚PD与TO后级驱动的PMOS的漏极直接连接。

9.1.2 T通道逻辑

当T为高电平时,M1管关断,TO输出低电平VS=VHI-10V,TO可开启外围PMOS;当T为低电平时,M1管打开,TO输出高电平,TO可关断外围PMOS,同时外围PMOS的漏极可通过M1管进行快速放电,满足使用过程中对放电时间的要求。同时,T信号具有过脉宽保护功能,由CPA引脚对地外接电容调制保护时间,1nF电容对应过脉宽保护阈值为1ms,T信号脉宽达到保护阈值时内部会将其关断。

	. '\ 7	
输	λ ÆX''	输出
VEE	T	ТО
0	0	VHI
0	1	VHI
-5	0	VHI
-5	1	VHI-10V

表 5 T 通道逻辑和负压检测关系表

9.2 电源开关控制电路(11区)

电源开关控制电路供电单元为VDD,内置PMOS,其由T/R信号直接控制。如芯片框图所示,T/R信号和TXO、RXO、TRXO、TXO_DOWN、RXO_DOWN、

TRXO DOWN的逻辑关系见下表

Т	R	TXO	TXO_DOWN	TRX	TRX_DOWN	RXO	RXO_DOWN
0	0	高阻态	0	高阻态	0	高阻态	0
0	1	高阻态	0	1	高阻态	1	高阻态
1	0	1	高阻态	1	高阻态	高阻态	0
1	1	高阻态	0	高阻态	0	高阻态	0

表 6 T/R 控制逻辑关系表

注: 当 VHI<10V, TO 为低时输出约为 1V

9.3 栅压调制控制电路(III区)

栅压调制电路有两路,其中GaN栅压调制控制电路输出端为VG1,范围为-1.7V~-3.2V; GaAs栅压调制控制电路输出端为VG2,范围为-0.3V~-0.65V。

9.3.1 GaN栅压调制控制逻辑关系

GaN栅压调制控制电路由4位控制位对输出电压进行选择,VG1默认态为0000(-1.70V),其逻辑关系见下表

D3	D2	D1	D0	VG1
0	0	0	0	-1.70V
0	0	0	1	-1.80V
0	0	1	0	-1.90V
0	0	1		-2.00V
0	1	0	× 0	-2.10V
0	1	0	1	-2.20V
0	1	1	0	-2.30V
0	1	X	1	-2.40V
1	0	Ž 0	0	-2.50V
1	0	0	1	-2.60V
1	0	1	0	-2.70V
1	0×-//13	1	1	-2.80V
1	7,1	0	0	-2.90V
1	/ [1]	0	1	-3.00V
1	1	1	0	-3.10V
1	1	1	1	-3.20V

表 7 GaN 栅压调制控制逻辑关系表

9.3.2 GaAs栅压调制控制逻辑关系

GaAs驱动放大器栅压调制控制电路由3位控制位对输出电压进行选择,VG2默认态为000(-0.65V), 其逻辑关系见下表

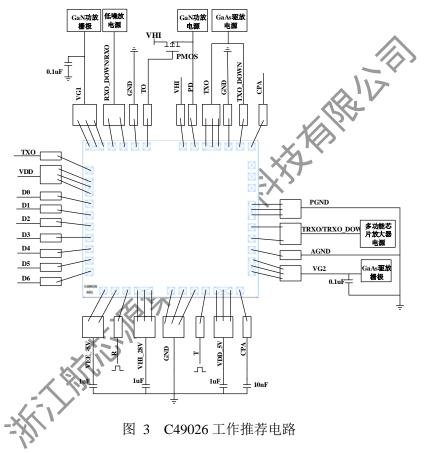

D4	D5	D6	VG2
0	0	0	-0.65V
0	0	1	-0.60V
0	1	0	-0.55V
0	1	1	-0.50V

表 8 GaAs 栅压调制控制逻辑关系表

1	0	0	-0.45V
1	0	1	-0.40V
1	1	0	-0.35V
1	1	1	-0.30V

10. 芯片应用说明

10.1 典型应用图

▶ 所用PMOS漏极电压为28V, Vth<10V。

10.2 应用说明

- 1) VHI、VDD、VEE 分别接+28V、+5V、-5V 的电压;
- 2) T、R 分别为发射、接收调制 TTL 输入信号, 其高电平范围 2.4V~5V, 低电平电压范围 0~0.8V;
- 3) VG1 接 GaN 功放的栅极,供电不能超过 50mA,可通过 D0、D1、D2、D3 进行-1.7V ~ -3.2V 范围的选择;
- 4) VG2 接 GaAs 驱放的栅极, 供电不能超过 10mA, 可通过 D4、D5、D6 进行-0.3V~-0.65V 范围的选择;
- 5) RXO与RXO_DOWN 相连后接 100mA 以下低噪放的电源;

Rev.2

- 6) TXO 与 TXO_DOWN 相连后接 200mA 以下 GaAs 驱放的电源;
- 7) TRXO 与 TRXO_DOWN 相连后接 100mA 以下多功能芯片放大器的电源;
- 8) TO 接 PMOS 的栅极, 当 T 为高时, TO 输出 18V, PMOS 导通; 当 T 为低时, TO 输出 28V, PMOS 关断;
- 9) PD 接 PMOS 的漏极,当 PMOS 关断时,该端口提供从 PMOS 漏端到地的泄放通道,使 PMOS 漏端快速放电。
- 10) CPA 引脚外接 1nF 电容过脉宽保护时间为 1ms,外接 10nF 电容时过脉宽保护为 10ms。若不使用过脉宽保护功能时, CPA 引脚需接地。下面给出不同 CPA 电容下对应的过脉宽保护时间:

	11-
CPA 外接电容值	过脉宽保护时间
100pF	70~90µs
130 pF	140~170μs
560pF	400~460μs
1nF	0.7~0.9ms
10nF	7~9ms

表 9 CPA 外接电容值与过脉宽保护时间对照

11. 注意事项

11.1 安装注意事项

- (1) 芯片键合区主要材料为铝,适宜于键合工艺,键合材料推荐硅铝丝,若使用金丝,在芯片装配、使用 过程中需控制金铝化合物产生;
- (2) 芯片背面未金属化, 可采用导电胶粘接;
- (3) 芯片背面为-5V 电位,装配时推荐悬空,请勿直接通过背面输入-5V 电压。

11.2 使用注意事项

- (1) T、R、D0~D6 端口内部设计有下拉电阻,不用时可悬空,状态为低;
- (2) 器件不能超过极限工作条件使用;
- (3) 电源去耦:应在靠近器件电源引出端处采用大于等于 1μF 电容。此外,线路板布线应尽量短,尽量避免直角、锐角走线;
- (4) 电路使用时应先接电源端,再接输入端,**电源端建议按照 VEE、VDD、VHI 的顺序上电,按照 VHI、VDD、VEE 的顺序下电**,同时应尽量避免电源、地线上的干扰;
- (5) 工作时先检查电源、地是否接触良好后再接通器件电源。

11.3 防护注意事项

- (1) 本产品可以抗 1000V 静电击穿,使用时应注意避免静电损伤,操作人员戴接地防静电手环,操作台面、操作设备接地良好,拿取芯片时,最好使用真空吸笔,以免损伤芯片;
- (2) 真空包装好的芯片应贮存在温度 10℃到 30℃,相对湿度 20%~70%的环境中,周围没有酸、碱或者其它腐蚀气体,通风良好,且具备相应防静电措施,未使用的芯片应存于氮气柜中;
- (3) 在避免雨、雪直接影响的条件下,装有产品的包装箱可以用安全的运输工具运输。但不能和带有酸性、 碱性和其它腐蚀性物体堆放在一起。

· 持有人持有人。

12. 版本说明

产品型号	编制时间	版本编号	修订记录
C49026	2021.10.14	Rev.1	初始版本
C49026	2022.04.11	Rev.2	统一修正

